Искусственный интеллект в медицине и здравоохранении

Внедрение технологий искусственного интеллекта в медицине – один из главных трендов в мире здравоохранения. ИИ и нейросети способны в корне изменить всю мировую медицину: преобразовать систему диагностики, способствовать разработке новых лекарственных препаратов, повысить качество медуслуг в целом и снизить расходы. В перспективе возможности ИИ практически безграничны. Однако прежде чем рассматривать особенности использования технологии в сфере здравоохранения, необходимо разобраться в том, что представляет из себя ИИ.

Что такое ИИ?

Одно из первых определений ИИ было предложено еще в 80-х годах XX века. Ученые в области теории вычислений Файгенбаум и Барр назвали искусственный интеллект областью информатики, направленной на создание интеллектуальных систем, обладающих возможностями, присущими человеческому разуму. К ним относят возможность обучения, распознавание языка, умение рассуждать и решать различные проблемы.

Сегодня к ИИ относят программные средства с набором алгоритмов и методов, которые могут решать интеллектуальные задачи так же, как это сделал бы человек. К примеру, искусственный интеллект способен:
Прогнозировать различные ситуации
Оценивать информацию и формулировать заключительную оценку
Анализировать данные и искать скрытые закономерности
Стоит отметить, что на настоящий момент компьютеру не доступно моделирование сложных процессов высшей нервной системы человека: творчество, эмоции и т.д. Все это может возникнуть со временем и с появлением более сильного искусственного интеллекта. Однако компьютеры уже научились решать задачи так называемого «слабого искусственного интеллекта». Машина может работать по заранее установленным человеком правилам.

Кроме того увеличивается количество проектов, в которых компьютеры не только работают по установленным алгоритмам, но также самообучаются, совершенствуются и решают более сложные задачи.
Отличие искусственного интеллекта от привычного ПО
Не стоит путать обычные программы с ИИ. Первые создаются программистами, которым не нужно обладать информацией обо всех зависимостях между входными параметрами и ответом – полученным результатом. Такие программные продукты прекрасно справляются со многими задачами, в том числе медицинскими – системы используются для расчетов статистик, формирования реестров и т.д.

Искусственный интеллект нужен там, где невозможно задать четкие правила и алгоритмы. К примеру, как простая программа может на рентгенологическом снимке выявить наличие патологии? Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни. Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы.

Как работают нейронные сети в медицинской сфере?

Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению. Механизм работы искусственных нейросетей повторяет принцип биологических. В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой.

В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных – чем их больше, тем лучше.

Нейросети могут применяться в медицине разными способами. Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос.

Естественно, нейросеть не может на 100% утверждать, что с названными симптомами у пациента, например, грипп, однако она предполагает такой диагноз в соответствии с заключениями врачей по другим медкартам.

Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру.

Предсказание падения артериального давления с помощью ИИ

В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства.

Алгоритм разработан с помощью технологий машинного обучения в медицине. Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии.

Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. ИИ сумел правильно предсказать внезапное падение артериального давления в 84% случаев за 15 минут до падения, в 84% случаев – за 10 минут, и в 87% случаев – за 5 минут.

Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений.

Распознавание рака кожи

Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов. Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам.

Машина справилась с задачей лучше специалистов. Она правильно распознала злокачественные образования в 95% случаев, тогда как люди показали результат только в 86%.

ИИ в УЗИ-обследовании беременных

Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами. Система работает на основе искусственного интеллекта, и в нее заложено более 350 тысяч снимков плодов с теми или иными отклонениями.

Система называется ScanNav и она способна давать врачу много полезной информации о патологиях плода, опираясь на имеющиеся в базе данные по другим пациенткам.

Пока ScanNav работает в тестовом режиме и используется только в акушерстве, но в будущем она может получить намного более широкое распространение и будет особенно полезна для стран, испытывающих острый дефицит во врачах.

Применение и польза искусственного интеллекта в медицине

Разработка ИИ сегодня является приоритетной задачей для многих стран мира. Если рассматривать внедрение умных систем в медицинской сфере, то в первую очередь их польза будет состоять в увеличении точности диагностики различных заболеваний.

Практики и опыта врача может быть недостаточно для того, чтобы своевременно выявить ту или иную проблему в организме человека, тогда как нейронная сеть, обладающая доступом к огромному объему данных, передовой научной литературе и миллионам историй болезней, сможет быстро классифицировать любой случай, соотнести его со схожими проблемами у других пациентов и предложить план лечения.

Сегодня искусственный интеллект не может решать сложные медицинские задачи: он самостоятельно не придумает и не спроектирует прибор из будущего, который сможет за пару секунд отсканировать организм человека, выявить любые проблемы и назначить оптимальное лечение. Однако и нынешние возможности очень интересны для врачей, пациентов и клиник.

Врачам

Сегодня искусственный интеллект отлично справляется с простыми задачами. Например, он способен выявить наличие инородного тела или патологии по рентгеновскому снимку, а также определить наличие раковых клеток в цитологическом материале. В анализе различных медицинских данных искусственный интеллект уже показывает великолепные результаты – точность выявления патологий по УЗИ и МРТ превышает 90%.

Интересно еще и то, что сейчас разрабатывается все большее количество проектов, ориентированных именно на врачей:
  • 1
    IBM: Watson
    Это суперкомпьютер, способный отвечать на вопросы, которые задаются не на языке программирования, а на простом человеческом языке. Позднее было запущено подразделение Watson Health, главное направление которого – использование суперкомпьютера в медицине. Компьютеру обеспечили доступ к огромному количеству данных: энциклопедиям, базам научных статей, а также медицинским картам и снимкам. Машина проанализировала свыше 50 миллионов анонимных медкарт и более 30 миллиардов снимков. Вся эта информация использовалась для дальнейшего применения в онкологии, для поиска на УЗИ признаков порока сердца. IBM запустило облачную платформу Watson Health Cloud, благодаря которой технологии доступны для врачей и исследователей по всему миру.
  • 2
    Google DM Health
    Компания Google также занимается разработкой собственных медицинских систем ИИ. Проект DM Health сотрудничает с офтальмологической клиникой Moorfields Eye Hospital. ИИ используют для анализа анонимных глазных снимков и выявления первичных симптомов слепоты.
  • 3
    MedyMatch Technology
    Современная статистика показывает, что врачи часто допускают ошибки при анализе снимков КТ, что становится причиной назначения неверного лечения. Новый проект от израильских разработчиков призван помочь правильно диагностировать инсульт – система сравнивает снимок мозга пациента со снимками сотен тысяч других людей для выявления и подтверждения отклонений.

Пациентам

Системы ИИ в медицине разрабатываются не только для врачей, но и для их пациентов. Многие современные разработки позволяют людям самостоятельно отслеживать свое состояние здоровья, следить за динамикой пульса, давления, дыхания и прочих показателей. Причем необходимо не просто собирать данные, но и анализировать и интерпретировать их. С этими задачами неплохо справляются многие современные мобильные приложения:
  • 1
    AliveCor
    Карманный кардиолог. Приложение, которое позволяет в домашних условиях обработать сведения с датчика, снимающего кардиограммы. Искусственный интеллект анализирует данные пациента, отслеживает любые тревожные сигналы и рекомендует пользователю обратиться к врачу, если предвидит скорый инфаркт.
  • 2
    Sense.ly
    Анимированная медсестра, которая спрашивает о самочувствии пациента, наличии жалоб и уровне давления. На основе полученных от человека данных программа отправляет информацию лечащему врачу или рекомендует обратиться к определенному специалисту. Может рассказать о правилах приема лекарств или связать пациента по видеосвязи с врачом.
  • 3
    Mendel.ai
    Искусственный интеллект для раковых больных, который анализирует текущие испытания в сфере новых и экспериментальных препаратов против рака, сравнивает особенности испытаний с состоянием здоровья человека и рекомендует подходящие.

Управление больницей

Работа больницы требует быстрой координации персонала и имеющихся ресурсов, ведь на кону стоит не только здоровье, но и жизни людей. ИИ в здравоохранении может существенно помочь в управлении клиникой. Уже сегодня существуют проекты, предназначенные именно для этого:
  • 1
    Bright.md
    Это электронный ассистент, выступающий посредником между пациентом и доктором. Он предназначен для быстрого решения важных задач: организации встреч, назначения времени сдачи анализов, получения ответов больных по опросному листу и т.д. С его помощью врач освобождается от выполнения многих бюрократических процедур и может сосредоточиться на спасении жизней людей.
  • 2
    Qventus
    Это система мониторинга, которая предназначена для отслеживания состояния здоровья пациентов на стационарном лечении. Она умеет анализировать многочисленные данные здоровья, может предсказывать ухудшение состояния, а также резервировать врачей и оборудование в случае возникновения критических ситуаций.

Искусственный интеллект в российской медицине

Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. Конечно, передовые технологии зачастую внедряются в США и Азии, однако и Европа (Россия в том числе) применяет многочисленные инновации и выстраивает стратегию использования ИИ в здравоохранении.

Самые актуальные для нашей страны методы искусственного интеллекта в медицине – это распознавание речи и онлайн-диагностика заболеваний по медицинским картам и снимкам.

В 2017 году Институт развития интернета начал работу над созданием системы ИИ, предназначенной для постановки диагноза по снимкам. Ожидается, что она позволит гражданам узнавать о состоянии здоровья по снимкам, в том числе и в домашних условиях. Система должна уметь работать со снимками рентгена, УЗИ, МРТ и другими.

Ведутся также работы по созданию системы TeleMD, которая должна позволить онкологам связываться с коллегами для консультаций и своевременного выявления раковых клеток.

Регулирование сферы на законодательном уровне

Искусственный интеллект в медицине в России, как впрочем и в остальном мире, представляет собой абсолютно новое решение, требующее самого пристального внимания со стороны не только инвесторов, врачей и пациентов, но и законодателей.

Пока данная сфера никак не регламентируется законодательством, а ведь в будущем ИИ может серьезно влиять на работу медицинских учреждений. При этом не стоит забывать, что стопроцентно точные и достоверные результаты машины показывают далеко не всегда: есть вероятность возникновения ошибок, поэтому так важно, чтобы была правовая база, в деталях регламентирующая особенности данной сферы.

Работы в этом направлении уже ведутся. К примеру, в стране обсуждается возможность создания специального государственного агентства по робототехнике и введения поста профильного премьера, чтобы специалисты могли курировать сферу в целом.
Проблемы внедрения ИИ в здравоохранении: за и против
Искусственный интеллект и интернет вещей в здравоохранении – очень перспективные области, внедрение и развитие которых имеет преимущества и недостатки.

Повышение эффективности диагностики

ИИ работает на основе огромных объемов данных, благодаря чему существенно увеличивается точность и эффективность постановки диагнозов. Чтобы изучить несколько миллионов медицинских карт, специалисту нужны годы, а компьютер справляется с этим за короткое время.

Сокращение рутинных задач врачей

Искусственный интеллект может взять на себя все задачи, которые отвлекают медицинский персонал от основной работы – спасения человеческого здоровья и жизни. Программы могут подбирать палаты, искать доступное оборудование, следить за исправностью медтехники и т.д.

Уменьшение количества врачебных ошибок

ИИ уже сегодня часто показывает более высокую точность при постановке диагнозов и выполнении других работ, чем врач. Если же доктор и ИИ будут работать вместе, то вероятность ошибок сводится практически к уровню статистической погрешности.

Инвестиции в ИИ в медицине сегодня чрезвычайно важны – они дают возможность развивать сферу, а в перспективе и полностью изменить весь облик здравоохранения в мире, сделать его более надежным, эффективным, комфортным и безопасным для человека.

Однако в настоящее время не все идет гладко. У внедрения систем искусственного интеллекта в медицинскую сферу есть проблемы и недостатки, о которых нельзя забывать. Можно выделить несколько препятствий для ИИ в медицине.
Проблемы используемых медицинских данных
Для обучения ИИ используются уже имеющиеся медицинские карты пациентов, информация в которых может быть неполной, содержать всевозможные неточности и ошибки. Кроме того, в документах нет такой важной информации о больных, как особенности и условия их жизни, их привычки (в том числе вредные) и т.д. И сегодня отсутствуют эффективные механизмы сбора этих данных.

Естественно, если использовать для обучения машин информацию, заведомо содержащую неточности и даже ошибки, качество работы систем будет снижаться.

Непрозрачный алгоритм принятия решений

Системы искусственного интеллекта работают по принципу «черного ящика»: оператор не может посмотреть, почему программа приняла именно такое решение, а не какое-то другое. Практически невозможно определить, по каким причинам ИИ неверно решил задачу.

Стоимость

Создание и внедрение систем искусственного интеллекта требует серьезного финансирования. Высокая стоимость связана во многом с необходимостью обучать программу, настраивать ее под данные, накопленные в конкретном медицинском учреждении. Кроме того, она требует специального обслуживания, для которого потребуется квалифицированная и мотивированная команда.

Безопасность

Чтобы ИИ работал качественно и быстро, ему требуются серьезные вычислительные мощности, которых может просто не быть в обычном медучреждении. Если же вынести компьютерную сеть за пределы одного учреждения, существенно увеличивается вероятность вмешательства в ее работу злоумышленников и хакеров. А любое проникновение в работу ИИ в медицинской сфере может стать причиной принятия системой неправильных решений, от которых напрямую зависит здоровье и жизни людей.

Заключение

Несмотря на серьезные сложности внедрения систем ИИ, перспективы их использования побуждают искать решения для преодоления любых преград. Над развитием данной области постоянно работают высококвалифицированные специалисты из разных уголков мира, талантливые исследователи, великолепные математики, врачи, представители фармацевтических компаний и т.д. Однако несмотря на развитие ИИ, роль человека в сфере здравоохранения по-прежнему остается лидирующей.
Задать вопрос
Заполните форму, и наши эксперты ответят вам
(если Вы наш клиент, пишите в NOC@center2m.ru )